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Quasi-Optical Power Combining of
Solid-State Millimeter-Wave Sources

JAMES W. MINK, SENIOR MEMBER, IEEE

Abstract —Very efficient power combining of solid-state millimeter-wave
sources may be obtained through the application of guasi-optical resonators
and monolithic source arrays. Through the theory of reiterative wavebeams
(beam modes) with application of the Lorentz reciprocity theorem, it is
shown that planar source arrays containing 25 individual elements or more
result in very efficient power transfer of energy from the source arrays to
the fundamental wave-beam mode. It is further shown that for identical
sources within a properly designed quasi-optical power combiner, the
output power tends to increase much faster that number of source ele-
ments. )

I. INTRODUCTION

ONVENTIONAL waveguide power combiners are

limited in power output, efficiency, and number of
sources that may be combined in the millimeter-wave
region. This limitation is a consequence of the requirement
that linear dimensions of conventional waveguide reso-
nators be of the order of one wavelength to achieve accept-
able mode separation and to avoid multimode operation.
On the other hand, quasi-optical resonators have linear
dimensions large compared to wavelength and they offer
an attractive approach to overcome these limitations.
Fundamental limitations of power combining utilizing
quasi-optic resonator techniques is discussed in this paper,
and it is shown that very high combining efficiency may be
obtained. The approach utilizes an array of source ele-
ments placed within a transverse plane near one reflecting
surface of the resonator. Energy is extracted from the
system through one reflector which is partially transparent.

II. CoMBINER CONFIGURATION

To investigate the feasibility of quasi-optical power com-
bining of millimeter-wave sources, an approach which
combines a wavebeam resonator or Fabry—Perot resonator
is used as the combining element and sources are modeled
as an array of current elements within the resonant struc-
ture, as shown in Fig. 1. A wave-beam resonator of rectan-
gular symmetry is utilized and power is extracted from the

source array to the lowest order or “Gaussian” mode of the .

resonator. The resonator consists of two surfaces which are
large in terms of the operating wavelength. One surface is a
perfect, planar reflector and is located in the plane z =0;
the other reflector, located at z= D, is partially trans-
parent and curved. Useful energy will “leak” through this
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reflector with a well-defined spatial distribution. The re-
flector curvature may be expressed by a pair of focal
lengths which define the curvature in two perpendicular
axial planes, usually the x—z and the y—z planes. The
sources are placed in a transverse plane between the reflec-
tors and slightly displaced from the plane reflector. It is
assumed that each source, which may be an IMPATT or
GUNN diode, is attached to a short dipole which also lies
in a transverse plane. A planar array of source diodes with
connecting dipoles lends itself to integrated-circuit fabrica-
tion techniques [1]. Feedback coupling or signal interaction
occurs between the resonant mode and the individual
sources leading to injection locking and single-frequency
operation. The coupling coefficient of the source array for

“each mode is calculated through application of the Lorentz

reciprocity theorem. Also, the driving point resistance of
each dipole in the presence of all other excited dipoles is
calculated.

For this configuration, one must consider the electro-
magnetic fields within two regions of space. Between the
reflectors, 0 < z < D, a resonant field exists which consists
of two traveling waves, one propagating in the +:z or
“forward” direction and a second equal amplitude wave
traveling in the — z or “backward” direction. The sum of
the traveling waves may be expressed as a standing wave
whose transverse distribution is described as a sum of the
“wavebeam modes.” In the region z> D, only waves
traveling in the + z direction exist, and contain the same
spectrum of modes as the fields within the resonator.

III. THEORY

A. Electromagnetic Wavebeams and Resonators

Quasi-optic resonators are based upon reiterative wave
beams or beam modes. These modes were first described
by Goubau and Schwering [2] and they satisfy orthogonal-
ity relations like the wave modes in conventional tubular
waveguides. In directions transverse to the direction of
propagation, characteristic dimensions of fields contained
within wave-beam resonators are much larger than those in
conventional waveguides. They range from about 20 to
many thousand wavelengths depending on the frequency
and structures used. In the millimeter /sub-millimeter range,
the transverse dimensions are typically from 20 to 100
wavelengths.

Modes of rectangular symmetry are utilized for this
investigation since the beam modes, as well as source
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Fig. 1.

Resonator—source array configuration.

coordinates of a regular rectangular array, may be ex-
pressed in Cartesian coordinates. Wave beams expressed in
Cartesian coordinates are satisfied by Hermite—Gaussian
functions [3], [4]. Since the definition of the Hermite poly-
nomials is not uniform in the literature, the following
definition is used [3], [S]:

Ho(X) = (<) (X72) = (e (- X72). (1)

The following recurrence relation is also useful:
He(n+1)(X) =XHe(n)(X)_nHe(n—l)(X)' (2)

The Hermite polynomials form a complete system of or-
thogonal functions within the range — co < X < oo with the
weight function exp(— X2/2). An ortho-normal spectrum
of wave-beam modes may be obtained from this definition,
and is shown below for each linearly polarized component
of the wave beam [4]*:

E;(x,y,2)
1/4
€
=—(”/ ) 1+ 1+ 02"

VaXYm'n!
“H,,(V2x/x,)H,,(V2y/,)

-exp{— %[(x/xz)z“'()’/}’z)z]

— . 1 2 2
+J k2+5(u(X/xz) +o(y/y,)

—(m+ l)tanl(u)—(n-l— ;)taml(u)}} (3)

2
where
u=z/kX?, v=z/kY?
— 22 — 22
’=X21+Zf?)"n=Y21+Z3ﬁ)

and the relationship between field components is

u -
Efn=t\ s M B =F\"HZ,. ()

*The argument (x, y, z) of beam modes will be suppressed throughout
this paper except when it is necessary to refer to a specific point, such as
the location of a current source.
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Fig. 2. Cross section showing spatial regions.

The E,;, fields represent the desired wave-beam modes
and the + sign refers to traveling waves progressing in the
positive z direction, and the — sign refers to waves travel-
ing in the negative z direction. The subscript x or y refers
to the polarization. Quantities X and ¥ which determine
the decay of the field in the x and y directions are called
mode parameters. Mode parameters are parameters which
are adjusted so that the wavebeam satisfies an imposed
condition. When one considers a resonator structure, the
condition that must be satisfied is that for each round trip
of a wave within the resonator, the field repeats itself in
both phase and amplitude distribution. It has been shown
that the mode parameter is a function of resonator config-
uration and wavelength. For the resonator described above,
the mode parameters are [4]

kX*=\/(2- D/F,)E.D (5)
kY?>=\/(2-D/F,)F,D (6)
where

k=2m/A

D =distance between the reflecting surfaces,

F,={ocal length of the curved reflector referenced to the
X axis,

F,=focal length of the curved reflector referenced to the
y axis.

The modes satisfy, in any plane z = constant, the ortho-
gonality relations

\/E / f_ZEmn-E,:‘,n, dxdy=8,,.8,.,. (7)

Since the Hermite—Gaussian functions form a complete
system of orthogonal functions, any beam whose transverse
electric field is known in a plane z =constant can be
expanded into a series of wave-beam modes, providing the
beam satisfies a paraxial propagation condition. Experi-
ence, however, has shown that this requirement is satisfied
in practical systems and that the error tends to occur in
higher order modes which usually are not of interest.

The modes described by (3) represent waves traveling
freely in space. With reference to Fig. 2, they describe the
fields outside of the resonator, or in the region z > D. In
order to satisfy the boundary conditions within the reso-
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nator region, 0 < z < D, one must take for each mode a
sum of “forward” and “backward” traveling waves. Under
resonant conditions, the fields within the resonator may
build up due to multiple reflections, and the amplitude will
be limited by the reflection coefficient of the partially
transparent reflector. For application of the Lorentz re-
ciprocity theorem that will follow, it is required to de-
termine the resonator fields when excited by a properly
adjusted wave beam consisting of a single mode or spec-
trum of modes incident from z =oco0 upon the resonator.
These fields become the test fields. In order to compute the
worst-case fractional power coefficient, it is assumed that
all modes resonate simultaneously. Because the total phase
shift of a wave traveling from one reflector to the other
depends upon the mode numbers m and » [4], all modes
will not resonate simultaneously in an actual wave-beam
resonator. The condition of simultaneous resonance is nec-
essary to determine the best location of source elements.
This formulation results in the worst-case fractional
power-coupling coefficient. The fractional power-coupling
coefficient is defined as the power in the desired mode,
usually the fundamental Gaussian mode, divided by the
power in all modes excited by the given current distri-
bution.

The partially transparent reflector must be characterized
in order to determine the electromagnetic field within the
resonator. This reflector may be considered as a lossless
two-port junction. The scattering matrix of such a junction
has certain well-defined properties listed below [6]:

Sp=8y= Re/ (8)

S12=S21= vl—R281(0+"/2). (9)

Now, it is postulated that for a wave beam incident upon
the resonator from z=o0, the wave beams within the
resonator have both amplitude and phase differences from
the incident wave beam. Since a perfect reflector is located
at z =0, there is no net power flow through any plane
z > 0. Using the condition of zero net power flow through
any transverse plane along with the properties of the
lossless partially transparent reflector, the field within the
resonator becomes

ET = ARe(E} )sin(kz)

(10)

where

: P22 ()
P 2Rsin(¢)+y1— R*cos*(¢) Q¥ (1)
V1-R?
As seen by (11), the field strength is at its maximum
when ¢ = #/2. For this value of v, the fields within the

resonator are real; thus, the system is considered to be
resonant.

B. Coupling to an Array of Current Sources

One can now determine the coupling coefficient to a
current element or to an arbitrary array of current ele-
ments through application of the Lorentz reciprocity theo-
rem [7] with the further requirement that all current sources
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are located within the resonator. There is no loss in gener-
ality by considering only modes where E, ., = H,,,,=0,
and the impressed currents are x-directed

gé(E,fanl - E, xH,,,in)-nda=/ffVJ~E,£ndu (12)
R

where

E* and H 7, = modal fields in space,
ET and H! = fields within the resonator expressed in
terms of the modal fields,
E, and H;=fields in space due to the current ele-
ments,
Vx = volume bounded by the resonator.

The method used to find the field radiated by an arbi-
trary array of filamentary currents within a quasi-optical
resonator is to expand the radiated field in terms of normal
beam waveguide modes (Hermite-Gaussian functions) and
to determine the amplitude coefficients in this expansion.
With reference to Fig. 2, let J, represent an arbitrary
infinitely thin current element. Such a current must be
maintained by some external source (e.g., an IMPATT or
GUNN diode), but in the evaluation of the coupling to
beam modes, only radiated fields are of interest, and,
consequently, the source which maintains the specified
current does not enter the picture here.

The field radiated in the positive z direction by the array
of x-directed current elements may be represented by

E =Y a,Ef% forz>D (13)
kq
€
Hy =1/~ Ya, El forz>D. (14)
v kq

Since there is a perfectly conducting plane located at z =10
as shown in Fig, 2

E,,(x,y,$)=0. (15)

The volume chosen over which it is required to evaluate
the Lorentz reciprocity relation is bounded by a surface §
which extends to infinity in the transverse directions and
consists of an infinite, perfectly conducting plane S,
located at z =0 and a second infinite plane S,, located in
some plane z > D. When one then performs the integration
over this “closed surface”, there is only a contribution by
the integrals evaluated on S,. There is no contribution to
the integral over S| since the » X E = 0 along that surface.

f

+ a € + A
Err?nx X - Zaququ
S2 L

- Sy Bl x )| BL9
kq B
=ff fVRJ-E;,, dv.

Since E,,, = E ¥, one can utilize the orthogonality relation

(eq. (7)) for wave beams and perform the integration term

‘hda

(16)
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by term. Therefore

#(E,,,in X H, — E, X HZ))-nda=2a,,. (17)
Sz

Hence

a,,= %fffVJ-Elndv. (18)
R

Again, if one considers the case where the array consists of
an array of filamentary currents, that the currents are all
aligned with the electric field, and that the length of each
current elements is small compared to the mode parameter,
this equation can be written as follows:

(19)

1 T
Dpn = 5 YLAXE] (x,,%,,2,)
p

where

I,= the current into the “terminals” of the
pth current element,

E](x,,¥, z,)= the electric field strength of the m, n
mode at the location of the pth cur-
rent element,

A X, = effective length of the pth current ele-
ment.

Hence

1
AXP=};pr(l)-dlp. (20)
Now with the knowledge of the expansion coefficients
a,,, given by (19) and (10), which relates fields internal to
the resonator to the external fields, one can determine the
total electric and magnetic fields E,, H; due to an array of
current elements.

C. Driving Point Resistance of Each Element

Since the goal is to obtain a technique for efficient power
transfer from an array of sources, one must know the
driving point resistance to each element and then to match
the source to that resistance. It is assumed that the reso-
nator is adjusted for resonance; hence, the reactive compo-
nent is zero or at least very small. Since the dipole elements
will be surrounded by a strong electric field due to reso-
nator, the self impedance of the dipole is neglected. The
input impedance of a dipole element in the presence of an
electric field (created by all sources) may be expressed as
(8]

1

T T

Z=1 I/ fVRJP-E dv (21)
where ZPT is the driving point impedance for the pth
current element.

A more useful result is the driving-point impedance for a
given mode. It has been shown theoretically and verified
experimentally that a wave-beam resonator may be ad-
justed so that only one mode may exist for a given frequency
(for example, the mode patterns of lasers [9]). One can,
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therefore, express the driving-point resistance for each
mode as follows:

o= I

Again, considering the case of small dipoles of equal
equivalent length, the following expression is obtained:

2 .
Zypn=2A(AX) sin? (kz,)

(22)

Re[ Bzl )| £ 22 Re[ B3] (23

This result also may be obtained through considerations of
energy conservation. The power flowing into a dipole ele-
ment may be represented as the square of its terminal
current, multiplied by its driving-point resistance. Now,
total power into the system is the sum of the power flowing
into all individual elements. When this total power is
equated to the power flux of the forward-traveling wave
beam, one obtains the same result as shown by (23).

IV. CoMPUTED RESULTS

The theory developed above enables one to determine
the number of current elements required to obtain efficient
transfer of power to any wave-beam mode. Of primary
interest is the current source locations within the resonator,
their amplitudes, and the driving-point resistance for each
element when the lowest order “Gaussian wave beam” is
efficiently excited. In this section, two specific cases will be
considered. First, the case where all current elements are
assumed to have equal current moment, and second, where
the current moment amplitude is adjusted such that it is
proportional to the field strength of the fundamental mode
at its location.

To obtain efficient coupling, the current elements must
be distributed in a transverse plane in such a way that
power is efficiently transferred to the lowest order mode
and very little power is transferred to any of the other
modes. The efficiency of coupling may be calculated for a
given distribution of currents by computing the power
radiated by the lowest order mode and comparing it to the
total power radiated. From (13), it is seen that the ampli-
tude of each mode is represented by the coefficient a ok
thus, using (4), the power of each mode may be calculated

as follows:
€ 0
= * — LE %
P aqkaqk\/ p ff_quk Ej dxdy

= *
=a,45.

(24)

Since the modes are orthogonal for a given array of current
elements, the fractional power of the fundamental mode
(m=0, n=20) compared to the total power of all modes
becomes

%
A004 00

= ~ .
Zaqkaqk
qk

FP,,

(25)
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Fig. 3. Fractional power into fundamental mode by equal weight sources.

It should be noted that the excitation coefficient for any
mode is determined only by the current distribution and
the modal spectrum as if it were freely propagating in
space. This restriction is required to obtain the optimum
current distribution for the excitation of any given mode. If
it were not applied, the mode spectrum would not be
complete from the mathematical point of view. From an
engineering view point, it represents the worst case since it
assumes that all modes are at resonance. Thus, each mode
could extract energy from the current elements and is
included in the denominator of (25). This assumption
clearly aids in determining the optimum source array con-
figuration.

Fig. 3 illustrates the fractional power coupled into the
fundamental mode for four different array configurations
containing 9, 25, 49, and 81 elements in regular rectangular
arrays of equal moment sources with their individual phases
adjusted such that each term of (19) is real. All figures that
follow have been normalized such that the results pre-
sented are independent of the details of the wave-beam
resonator; a total of 441 modes are utilized for the compu-
tation of the denominator in equation (25). Of course, the
normalization must be removed when a particular case is
to be considered. To achieve meaningful normalization, the
spacing between source elements in each direction is ex-
pressed in terms of the wave-beam mode parameter (the
1/e? distance). The source array is considered to lie in a
plane transverse to the wave beam and is symmetrical
about the wave-beam axis. A practical location for the
source array is very close to the reflecting surface located
at z = 0. For this location, all elements will have uniform
phase and the reflecting surface can also become the heat
sink for active elements. In terms of coupling energy into
the fundamental mode, Fig. 3 shows that for each array
configuration there is an optimum source element spacing.
It also shows that the maximum source array length for
optimum coupling is approximately independent of the
number of array elements. The array will extend in each
direction from the wave-beam axis about 1.2 mode param-
eters. Since the ultimate goal is to combine many individ-
ual sources to obtain a high power source, the total power
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Fig. 5. Fractional power into fundamental mode by Gaussian weight
sources.

delivered to the fundamental mode must be determined.
Fig. 4 shows the increase of power as the number of
sources increases. Zero decibels is the power delivered to
the fundamental mode by a single source located on axis.
The trend of these curves shows that one should make a
tradeoff between array element spacing for optimum frac-
tional power and fundamental mode power. It appears that
the source spacing should be reduced so that the optimum
fractional power reduces by about 1 dB.

Fig. 5 illustrates the fractional power into the fundamen-
tal mode for four different array configurations consisting
of regular rectangular source arrays of 9, 25, 49, and 81
elements, and the current moment of each element is
adjusted to have a value proportional to the field strength
of the fundamental mode at the location of the element
(the source array current moments have a Gaussian taper).
In this case, very efficient coupling may be obtained since
the source array has been matched to the fundamental
mode. However, Fig. 6 shows that the fundamental mode
power decreases much faster as the source spacing is
increased than for the previous case. The net conclusion is
that for a power combiner, significant output power reduc-
tion will occur if the source spacing is allowed to increase.
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Fig. 7. Driving-point resistances for equal weight sources.

This is especially true for source arrays containing a large
number of elements.

Utilizing (23), a family of curves for the driving-point
resistance of each element of the source array is obtained.
However, this family of curves can be reduced to a single
curve for each array configuration. Equation (23) may be

written as
(AX)* [1+R
pmn = y? Sin (kzp) 1—-—-_R
[Re[VXY B} (x,, 5,)]R (26)
where

§=2Z§1Re[\/ﬁ71§;n(xq,yq)]. (27)

Now (27) represents a normalized resistance factor and
depends only upon normalized source spacing, while (26) is
the actual driving-point resistance and requires detailed
knowledge of the resonator configuration. Fig. 7 is the
normalized driving-point resistances for the four array
configurations described above, where each element has
the same effective length and driving-point current. Fig. 8
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is the normalized driving-point resistances for the four
array configurations when each element has the same effec-
tive length and the terminal current is proportional to the
field strength of the fundamental mode at the current
element location.

V. EXAMPLES

Quasi-optical millimeter-wave power combining was ex-
perimentally investigated by Wandinger and Nalbandian
[10]. They utilized a wave-beam resonator with two wave-
guide ports loaded with dielectric rods to couple energy
into the system and reported power-combining efficiency
of 52 percent. This value is in general agreement with the
theory presented here. Each waveguide aperture loaded
with a dielectric rod was modeled as four small current
elements in a rectangular array separated by 0.1 mode
parameters. The location of these “patches” of currents
was estimated from the photograph in the paper by
Wandinger and Nalbandian to be 0.45 mode parameters
from the beam axis. Due to the mode-dependent phase
shift of wave-beam modes, only one fourth of the total
mode spectrum would simultaneously be resonant in a
confocal resonator for a given frequency. All of the above
conditions were applied and a coupling efficiency of 40
percent was calculated. Since this theory does not take into
account direct, near-field coupling between closely spaced
dielectric rod antennas, the agreement is considered good.

Figs. 3 and 5 show that efficient transfer of energy
between the array and the wave beam may be obtained for
source arrays of a 5X5 and larger if the proper spacing
between elements is chosen, while Figs. 4 and 6 show that
with the same spacing between array elements there is a
diminishing return of power transferred to the fundamen-
tal mode as source arrays become larger. The following
example is representative. It is assumed that active ele-
ments are arranged in the configuration of a uniform 5 x5
array and are fabricated as a monolithic structure in GaAs
[1]. The transverse dimension of the plane reflector is taken
to be 5 cm, which is about the size of available GaAs

~ wafers. The resonator will be “semi-confocal”, therefore,

F, = F,= D. The following conditions are also chosen: the
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TABLET
DRIVING-POINT RESISTANCES FOR 5 X 5 SOURCE ARRAY LOCATED
d MILLIMETERS FROM PLANE REFLECTOR

R-ohmxd-mm 0.05 0.1 0.15
Roo B EXT! 8.43 18.9
Rio - |1.95 7.78 17.5
Ryq. : 179 7.78 16.2
R0 1.53 6.12 13.7
R>q 1.41 5.65 12.7
Ryp 111 o 10.0

mode parameters X and Y are 1 cm; the operating
frequency is_100 GHz; the normalized current elemient
length AX/X is 1/50; the normalized spading between
source elements is 0.4; and the reflection coefficient R of
the partially transparent reflector is 0.98. From (5) and (6),
one obtains D = 20.9 cm. The driving-point resistance for

each element of the source array is shown in Table L. It .

should be noted that, because of symmetry, there are only
six different driving-point resistances. The array elements
all are numbered in matrix notation with the 0,0 element
located on the wave-beam axis. For the example shown in
Table I, the driving-point resistances were computed by
(26) are shown for a 5X5 source array located 0.05, 0.1
‘and 0.16 mm from and parallel to the plane reflector. In
addition, the region of space between the source array and
thé plane reflector is filled with GaAs. Since IMPATT
devices are designed to operate with low driving-point
resistances [11], a distance d of 0.1 mm may be chosen as a
compromise between the desired low driving-point resis-
tances and the minimum practlcal thickness of GaAs.

If each active source element is able to maintain the
same driving current independent of other nearby sources,
and if a single source provides an output power of 1 mw
when combined in the quasi-optical power combiner, 25
such sources in a 5X5 array would provide an output
power of about 300 mw, 49 such sources in a 7X7 array
would provide about 630 mw, and 81 such sources in a
9x9 array would provide less than 800 mw. The above
example assumes the séparation between source elements
remains constant at 0.4 mode parameters and indicates
that there may be a diminishing return upon increasing the
number of source ¢lements to very large numbers. How-
ever, with proper design, one may conclude from this study
that it is practical to combine large numbers of millimeter-
wave sources using quasi-optical techniques and that sub-
stantial power may be obtained.
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