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Quasi-Optical Power Combining of
Solid-State Millimeter-Wave Sources

JAMES W. MINK, SENIOR MEMBER, IEEE

Abstract —Very efficient power combining of solid-state milfimeter-wave

sources may be obtained through the application of quasi-opticaf resonators

and monotfthic source arrays. Through the theory of reiterative wavebeams

(beam modes) with application of the Lorentz reciprocity theorem, it is

shown that planar source arrays containing 25 indlviduaf elements or more

result in very efficient power transfer of energy from me source arrays to

the fundamental wave-bemn mode. It is further shown that for identical

sources within a properly designed quasi-optical power combiner, the

output power tends to increase much faster that nnmber of source ele-

ments.

1. INTRODUCTION

c ONVENTIONAL waveguide power combiners are

limited in power output, efficiency, and number of

sources that may be combined in the. millimeter-wave

region. This limitation is a consequence of the requirement

that linear dimensions of conventional waveguide reso-

nators be of the order of one wavelength to achieve accept-

able mode separation and to avoid multimode operation.

On the other hand, quasi-optical resonators have linear

dimensions large compared to wavelength and they offer

an attractive approach to overcome these limitations.

Fundamental limitations of power combining utilizing

quasi-optic resonator techniques is discussed in this paper,

and it is shown that very high combining efficiency may be

obtained. The approach utilizes an array of source ele-

ments placed within a transverse plane near one reflecting

surface of the resonator. Energy is extracted from the

system through one reflector which is partially transparent.

II. COMBINER CONFIGURATION

To investigate the feasibility of quasi-optical power com-

bining of millimeter-wave sources, an approach which

combines a wavebeam resonator or Fabry–Perot resonator

is used as the combining element and sources are modeled

as an array of current elements within the resonant struc-

ture, as shown in Fig. 1. A wave-beam resonator of rectan-

gular symmetry is utilized and power is extracted from the

source array to the lowest order or” Gaussian” mode of the

resonator. The resonator consists of two surfaces which are

large in terms of the operating wavelength. One surface is a

perfect, planar reflector and is located in the plane z = O;

the other reflector, located at z = D, is partially trans-

parent and curved. Useful energy will “leak” through this
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reflector with a well-defined spatial distribution. The re-

flector curvature may be expressed by a pair of focal

lengths which define the curvature in two perpendicular

axial planes, usually the x – z and the y – z planes. The

sources are placed in a transverse plane between the reflec-

tors and slightly displaced from the plane reflector. It is

assumed that each source, which may be an IMPATT or

GUNN diode, is attached to a short dipole which also lies

in a transverse plane. A planar array of source diodes with

connecting dipoles lends itself to integrated-circuit fabrica-

tion techniques [1’]. Feedback coupling or signal interaction

occurs between the resonant mode and the individual

sources leading to injection locking and single-frequency

operation. The coupling coefficient of the source array for

each mode is calculated through application of the Lorentz

reciprocity theorem, Also, the driving point resistance of

each dipole in the presence of all other excited dipoles is

calculated.

For this configuration, one must consider the electro-

magnetic fields within two regions of space. Between the

reflectors, O < z < D, a resonant field exists which consists

of two traveling waves, one propagating in the + z or

“forward” direction and a second equal amplitude wave

traveling in the – z or “ backwar& direction. The sum of

the traveling waves may be expressed as a standing wave

whose transverse distribution is described as a sum of the

“ wavebeam modes.” In the region z > D, only waves

traveling in the + z direction exist, and contain the same

spectrum of modes as the fields within the resonator.

III. THEORY

A. Electromagnetic Wavebeams and Resonators

Quasi-optic resonators are based upon reiterative wave

beams or beam modes. These modes were first described

by Goubau and Schwering [2] and they satisfy orthogonal-

ity relations like the wave modes in conventional tubular

waveguides. In directions transverse to the direction of

propagation, characteristic dimensions of fields contained

within wave-beam resonators are much larger than those in

conventional waveguides. They range from about 20 to

many thousand wavelengths depending on the frequency

and structures used. In the millimeter/sub-millimeter range,
the transverse dimensions are typically from 20 to 100

wavelengths.

Modes of rectangular symmetry are utilized for this

investigation since the beam modes, as well as source
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Fig. 1. Resonator–source array configuration.
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Fig. 2. Cross section showing spatiat regions.

may be ex-

rnessed in Cartesian coordinates. Wave beams exvressed in The E~n fields represent the desired wave-beam modes

~artesian coordinates are satisfied by Hermite~Gaussian

functions [3], [4]. Since the definition of the Hermite poly-

nomials is not uniform in the literature, the following

definition is used [3], [5]:

Hen(x) = (-l)n(x’/2) ~(exp(- X2/2)). (1)

The following recurrence relation is also useful:

,(.+I) (X) = x%(n)(x) - n%(.-,)( x).H (2)

The Herrnite polynomials form a complete system of or-

thogonal functions within the range – m < X< co with the

weight function exp ( — X2/2). An ortho-normal spectrum

of wave-beam modes may be obtained from this definition,

and the + sign refers to traveling waves progressing in the

positive z direction, and the – sign refers to waves travel-

ing in the negative z direction. The subscript x or y refers

to the polarization. Quantities ~ and ~ which determine

the decay of the field in the x and y directions are called

mode parameters. Mode parameters are parameters which

are adjusted so that the wavebeam satisfies an imposed

condition. When one considers a resonator structure, the

condition that must be satisfied is that for each round trip

of a wave within the resonator, the field repeats itself in

both phase and amplitude distribution. It has been shown

that the mode parameter is a function of resonator config-

uration and wavelength. For the resonator described above,

the mode parameters are [4]

and is shown below for each linearly polarized component
k~2 = I(2 – D/FX) FXD

of the wave beam [4]*:
(5)

E;n(x, y,z)

= (P/J’4

J~(1+u2)
-1/4(1 + u’)-1/4

-~=m(J%xz)% (%Oz)

{[ : (x/x, )’+(Y/Y=)’],exp ––

(3)

~
k~’= (2– D/F)FD (6)

where

k=2rr/A

D = distance between the reflecting surfaces,

FX= focal length of the curved reflector referenced to the

x axis,

~,= focal length of the curved reflector referenced to the

y axis.

The modes satisfy, in any plane z = constant, the ortho-

gonality relations[
+j kz+ ;(U(X/X=)2+ U(~/yz)2

-(m++an-’(+(n+:ltan-d}
where

U = z/k~2

‘=~’(1+’:rf=’’(l+~)

and the relationship between field components is

EX;~ = +
{

~ HY~E, EY* _ +
c r

e HX;~.
E

freely in space. With reference to Fig. 2, they describe th~
*The argument (x, y, z) of beam modes will be suppressed throughout

this paper except when it is necessary to refer to a specific point, such as
fields outside of the resonator, or in the region z > D. In

the location of a current source. order to satisfy the boundary conditions within the reso-

Since the Hermite-Gaussian functions form a complete

system of orthogonal functions, any beam whose transverse

electric field is known in a plane z = constant can be

expanded into a series of wave-beam modes, providing the

beam satisfies a paraxial propagation condition. Experi-

ence, however, has shown that this requirement is satisfied

in practical systems and that the error tends to occur in

(4) higher order modes which usually are not of interest.
The modes described by (3) represent waves traveling
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nator region, O < z < D, one must take for each mode a

sum of” forward” and “backward” traveling waves. Under

resonant conditions, the fields within the resonator may

build up due to multiple reflections, and the amplitude will

be limited by the reflection coefficient of the partially

transparent reflector. For application of the Lorentz re-

ciprocity theorem that will follow, it is required to de-

termine the resonator fields when excited by a properly

adjusted wave beam consisting of a single mode or spec-

trum of modes incident from z = co upon the resonator.

These fields become the test fields. In order to compute the

worst-case fractional power coefficient, it is assumed that

all modes resonate simultaneously. Because the total phase

shift of a wave traveling from one reflector to the other

depends upon the mode numbers m and n [4], all modes

will not resonate simultaneously in an actual wave-beam

resonator. The condition of simultaneous resonance is nec-

essary to determine the best location of source elements.

This formulation results in the worst-case fractional

power-coupling coefficient. The fractional power-coupling

coefficient is defined as the power in the desired mode,

usually the fundamental Gaussian mode, divided by the

power in all modes excited by the given current distri-

bution.

The partially transparent reflector must be characterized

in order to determine the electromagnetic field within the

resonator. This reflector may be considered as a lossless

two-port junction. The scattering matrix of such a junction

has certain well-defined properties listed below [6]:

S1l = Szz = ReJe (8)

Slz = Szl = 4~eJ(o+”12). (9)

Now, it is postulated that for a wave beam incident upon

the resonator from z = co, the wave beams within the

resonator have both amplitude and phase differences from

the incident wave beam. Since a perfect reflector is located

at z = O, there is no net power flow through any plane

z >0. Using the condition of zero net power flow through

any transverse plane along with the properties of the

lossless partially transparent reflector, the field within the

resonator becomes

E~~=ARe(EJ~) sin(kz) (lo)

where

2Rsin(~) + ~~$) ej($+r,z)
A=

4GP
(11)

As seen by (11), the field strength is at its maximum

when i) = 7/2. For this value of +, the fields within the

resonator are real; thus, the system is considered to be

resonant.

B. Coupling to an Array of Current Sources

One can now determine the coupling coefficient to a

current element or to an arbitrary array of current ele-

ments through application of the Lorentz reciprocity theo-

rem [7] with the further requirement that all current sources

are located within the resonator. There is no loss in gener-

ality by considering only modes where EV~~ = HX~~ = O,

and the impressed currents are x-directed

where

E~~ and H~~ = modal fields in space,

E~~ and H~n = fields within the resonator expressed in

terms of the modal fields,

El and Hl= fields in space due to the current ele-

ments,

V~ = volume bounded by the resonator.

The method used to find the field radiated by an arbi-

trary array of filamentary currents within a quasi-optical

resonator is to expand the radiated field in terms of normal

beam waveguide modes (Hermite-Gaussian functions) and

to determine the amplitude coefficients in this expansion.

With reference to Fig. 2, let J~ represent an arbitrary

infinitely thin current element. Such a current must be

maintained by some external source (e.g., an IMPATT or

GUNN diode), but in the evaluation of the coupling to

beam modes, only radiated fields are of interest, and,

consequently, the source which maintains the specified

current does not enter the picture here.

The field radiated in the positive z direction by the array

of x-directed current elements may be represented by

El= ~a~qE~q2 forz>D (13)
kq

Since there is a perfectly conducting plane located at z = O

as shown in Fig. 2

E;. (x, y,+) =0. (15)

The volume chosen over which it is required to evaluate

the Lorentz reciprocity relation is bounded by a surface S

which extends to infinity in the transverse directions and

consists of an infinite, perfectly conducting plane S1,

located at z = O and a second infinite plane Sz, located in

some plane z > D. When one then performs the integration

over this “closed surface”, there is only a contribution by

the integrals evaluated on Sz. There is no contribution to

the integral over S1 since the n x E = O along that surface.

(16)

Since E;. = E~~, one can utilize the orthogonality relation

(eq. (7)) for wave beams and perform the integration term
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by term. Therefore

#( E~nx Hl –El XH~n)”nda=2aM.. (17)
S2

Hence

1
a ,=_

mn 2 JJJ
J. E~. dv. (18)

1+

Again, if one considers the case where the array consists of

an array of filamentary currents, that the currents are all

aligned with the electric field, and that the length of each

current elements is small compared to the mode parameter,

this equation can be written as follows:

a mn = ; ~Ip A$E:n(xp, xp, zp) (19)

P

where

IP = the current into the” terminals” of the

pth current element,

E:.(xPv Yp~2P)= the electric field strength of the m, n

mode at the location of the p th cur-

rent element,

A XP = effective length of the pth current ele-

ment.

Hence

AXP=:~Ip(l)”dlP.
P

(20)

Now with the knowledge of the expansion coefficients

a ~~ given by (19) and (10), which relates fields internal to

the resonator to the external fields, one can determine the

total electric and magnetic fields El, HI due to an array of

current elements.

C. Driving Point Resistance of Each Elemenl

Since the goal is to obtain a technique for efficient power

transfer from an array of sources, one must know the

driving point resistance to each element and then to match

the source to that resistance. It is assumed that the reso-

nator is adjusted for resonance; hence, the reactive compo-

nent is zero or at least very small. Since the dipole elements

will be surrounded by a strong electric field due to reso-

nator, the self impedance of the dipole is neglected. The

input impedance of a dipole element in the Presence of an

electric ~eld [created by all sources) may be
[8]

Z;=L M J .ETdv
I; VR p

where ZPT is the driving point impedance

current element.

expressed as

(21)

for the pth

A more useful result is the driving-point impedance for a

given mode. It has been shown theoretically and verified

experimentally that a wave-beam resonator may be ad-

justed so that only one mode may exist for a given frequency

(for example, the mode patterns of lasers [9]). One can,

therefore, express the driving-point resistance for each

mode as follows:

1
z M J .E;. dv.

P“”=q “Rp
(22)

Again, considering the case of small dipoles of equal

equivalent length, the following expression is obtained:

p~~ = 2A(AX)2sin2(kzp)z

q ‘P

This result also may be obtained through considerations of

energy conservation. The power flowing into a dipole ele-

ment may be represented as the square of its terminal

current, multiplied by its driving-point resistance. Now,

total power into the system is the sum of the power flowing

into all individual elements. When this total power is

equated to the power flux of the forward-traveling wave

beam, one obtains the same result as shown by (23).

IV. COMPUTED RESULTS

The theory developed above enables one to determine

the number of current elements required to obtain efficient

transfer of power to any wave-beam mode. Of primary

interest is the current source locations within the resonator,

their amplitudes, and the driving-point resistance for each

element when the lowest order “Gaussian wave beam” is

efficiently excited. In this section, two specific cases will be

considered. First, the case where all current elements are

assumed to have equal current moment, and second, where

the current moment amplitude is adjusted such that it is

proportional to the field strength of the fundamental mode

at its location.

To obtain efficient coupling, the current elements must

be distributed in a transverse plane in such a way that

power is efficiently transferred to the lowest order mode

and very little power is transferred to any of the other

modes. The efficiency of coupling may be calculated for a

given distribution of currents by computing the power

radiated by the lowest order mode and comparing it to the

total power radiated, From (13), it is seen that the ampli-

tude of each mode is represented by the coefficient a ~~;

thus, using (4), the power of each mode may be calculated

as follows:

Since the modes are orthogonal for a given array of current

elements, the fractional power of the fundamental mode

(m= O, n = O) compared to the total power of all modes

becomes

(25)
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Fig. 3. Fractional power into fundarnentaf mode by equaf weight sources.
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It should be noted that the excitation coefficient for any

mode is determined only by the current distribution and

the modal spectrum as if it were freely propagating in

space. This restriction is required to obtain the optimum

current distribution for the excitation of any given mode. If

it were not applied, the mode spectrum would not be

complete from the mathematical point of view. From an

engineering view point, it represents the worst case since it

assumes that all modes are at resonance. Thus, each mode

could extract energy from the current elements and is

included in the denominator of (25). This assumption

clearly aids in determining the optimum source array con-

figuration.

Fig. 3 illustrates the fractional power coupled into the

fundamental mode for four different array configurations

containing 9, 25, 49, and 81 elements in regular rectangular

arrays of equal moment sources with their individual phases

adjusted such that each term of (19) is real. All figures that

follow have been normalized such that the results pre-

sented are independent of the details of the wave-beam

resonator; a total of 441 modes are utilized for the compu-

tation of the denominator in equation (25). Of course, the

normalization must be removed when a particular case is

to be considered. To achieve meaningful normalization, the

spacing between source elements in each direction is ex-

pressed in terms of the wave-beam mode parameter (the

l/e 2 distance). The source array is considered to lie in a

plane transverse to the wave beam and is symmetrical

about the wave-beam axis. A practical location for the

source array is very close to the reflecting surface located

at z = O. For this location, all elements will have uniform

phase and the reflecting surface can also become the heat

sink for active elements. In terms of coupling energy into

the fundamental mode, Fig. 3 shows that for each array

configuration there is an optimum source element spacing.

It also shows that the maximum source array length for
optimum coupling is approximately independent of the

number of array elements. The array will extend in each

direction from the wave-beam axis about 1.2 mode param-

eters. Since the ultimate goal is to combine many individ-

ual sources to obtain a high power source, the total power

NORMALIZED SOURCE SPACING

Fig. 4. Power into fundamental mode by equal weight sources.
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Fig. 5. Fractional power into fundamental mode by Gaussiao weight
sources.

delivered to the fundamental mode must be determined.

Fig. 4 shows the increase of power as the number of

sources increases. Zero decibels is the power delivered to

the fundamental mode by a single source located on axis.

The trend of these curves shows that one should make a

tradeoff between array element spacing for optimum frac-

tional power and fundamental mode power. It appears that

the source spacing should be reduced so that the optimum

fractional power reduces by about 1 dB.

Fig. 5 illustrates the fractional power into the fundamen-

tal mode for four different array configurations consisting

of regular rectangular source arrays of 9, 25, 49, and 81

elements, and the current moment of each element is

adjusted to have a value proportional to the field strength

of the fundamental mode at the location of the element

(the source array current moments have a Gaussian taper).

In this case, very efficient coupling may be obtained since

the source array has been matched to the fundamental
mode. However, Fig. 6 shows that the fundamental mode

power decreases much faster as the source spacing is

increased than for the previous case. The net conclusion is

that for a power combiner, significant output power reduc-

tion will occur if the source spacing is allowed to increase.
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Fig. 7. Driving-point resistances for equaf weight sources,

This is especially true for source arrays containing a large

number of elements.

Utilizing (23), a family of curves for the driving-point

resistance of each element of the source array “is obtained.

However, this family of curves can be reduced to a single

curve for each array configuration. Equation (23) may be

written as

(AX)2

r

l+R
R —sin2(kzP) 1.R

pmn = ~~

[Re[~EJ.(xP,yP)]z (26)

where

——
fi=2~~Re [~ EJn(xq, yq)]. (27)

qP

Now (27) represents a normalized resistance factor and

depends only upon normalized source spacing, while (26) is

the actual driving-point resistance and requires detailed

knowledge of the resonator configuration. Fig. 7 is the

normalized driving-point resistances for the four array

configurations described above, where each element has

the same effective length and driving-point current. Fig. 8

2ooc-

ARRAY SIZE

-3X3
❑ ---- 5 x 5
*-*7X7
*-+9x9

‘*
‘.

I I 1 1 I 1 I 1 1

0 0.2 0.4 0.6 0.8 1

NORMALIZED SOURCE SPACING

Fig. 8. Driving-point resistances for Gaussian weight sources.

is the normalized driving-point resistances for the four

array configurations when each element has the same effec-

tive length and the terminal current is proportional to the

field strength of the fundamental mode at the current

element location.

V. EXAMPLES

Quasi-optical millimeter-wave power combining was ex-

perimentally investigated by Wandinger and Nalbandian

[10]. They utilized a wave-beam resonator with two wave-

guide ports loaded with dielectric rods to couple energy

into the system and reported power-combining efficiency

of 52 percent. This value is in general agreement with the

theory presented here. Each waveguide aperture loaded

with a dielectric rod was modeled as four small current

elements in a rectangular array separated by 0.1 mode

parameters. The location of these “patches” of currents

was estimated from the photograph in the paper by

Wandinger and Nalbandian to be 0.45 mode parameters

from the beam axis. Due to the mode-dependent phase

shift of wave-beam modes, only one fourth of the total

mode spectrum would simultaneously be resonant in a

confocal resonator for a given frequency. All of the above

conditions were applied and a coupling efficiency of 40

percent was calculated. Since this theory does not take into

account direct, near-field coupling between closely spaced

dielectric rod antennas, the agreement is considered good.

Figs. 3 and 5 show that efficient transfer of energy

between the array and the wave beam may be obtained for

source arrays of a 5 X 5 and larger if the proper spacing

between elements is chosen, while Figs. 4 and 6 show that

with the same spacing between array elements there is a

diminishing return of power transferred to the fundamen-

tal mode as source arrays become larger. The following

example is representative. It is assumed that active ele-

ments are arranged in the configuration of a uniform 5 x 5

array and are fabricated as a monolithic structure in GaAs

[1]. The transverse dimension of the plane reflector is taken

to be 5 cm, which is about the size of available GaAs

wafers. The resonator will be “ serni-confocal”, therefore,

FX = FY = D. The following conditions are also chosen: the



MINK: SOLID-STATE MILLIMETER-WAVE SOURCES

TABLE I
DRIVING-POINT RESISTANCES FOR 5 x 5 SOURCE ARRAY LOCATED

d MILLIMETERS FROM PLANE REFLECTOR

~~

l==
Roo

Rlo

RI,

Rzo

R2 ,

R22 ml
0,05 0.1 0,15

2.11 8.43 18.9

1.95 7.18 17.5

1.79 7.78 16.2

1.53 6.12 13.7

1,41 5.65 12.7

1.11 4.44 10.0

mode parameters ~ and ~ are 1 cm; the operating

frequency is 100 GHz; the normalized current element

length AX/~ is 1/50; the normalized spacing between

source elements is 0.4; and the reflecticm coefficient R of

the partially transparent reflector is 0.98. From (5) and (6),

one obtains D = 20.9 cm. The driving-point resistance for

each element of the source array is shown in Table I. It

should be noted that, because of synimetry, there are only

six different driving-point resistances, The array elements

all are numbered in matrix notation with the 0,0 element

located on the wave-beam axis. For the example shown in

Table I, the driving-point resistances were computed by

(26) are shown for a 5X 5 source array located 0.05, 0.1

and 0.16 mm from and parallel to the plane reflector. In

“addition, the region of space between the source array and

the plane reflector is filled, with GaAi. Since IMPATT

devices are designed to operate with low driving-point

resistances [11], a distance d of 0.1 mm may be chosen as a

compromise between the desired low driving-point resis-

tances and the minimuw practical thickness of GaAs.

If each active sour& element is able to maintain the

same driving current independent of other nearby sources,

and if a single source provides an output power of 1 mw

when combined in the quasi-optical power, combiner, 25

such sources in a 5 X 5 array would provide an output

power of about 300 mw, 49 such sources in a 7x 7 array

would provide about 630 mw, and 81 such sources in a

9 x 9 array would provide less than 800 mw. The above

example assumes the separation between source elements

remains constant at 0.4 mode parameters and indicates

that there may be a diminishing return upon increasing the

number of source elements to very large numbers. How-

ever, with proper design, one may conclude from this study

that it is practical to combine large numbers of millimeter-

wave sources using quasi-optical techniques and that sub-

stantial power may be obtained.
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